Floppinux - An Embedded 🐧Linux on a Single 💾Floppy
MANUAL FOR VERSION 0.1.0

 _____ _  _  
 |  ___| | ___  _ __  _ __ (_)_ __  _  ___  __
 | |_  | |/ _ \| '_ \| '_ \| | '_ \| | | \ \/ /
 |  _| | | (_) | |_) | |_) | | | | | |_| |>  < 
 |_|  |_|\___/| .__/| .__/|_|_| |_|\__,_/_/\_\
 |_|  |_|  
By Krzysztof Krystian Jankowski for the community
 
Goals for the project
The obvious most important goal is to fit everything (OS+software) on one floppy or 1440KiB
Latest Linux kernel
Tools reduced to those needed to support my embedded application
Documentation with easy and understandable steps to reproduce the build
As always free and open source
Additional future upgrades:
Ability to mount another floppy to save files
Nano text editor (or anything similar)
Let's Build FLOPPINUX Distribution
Working Directory
Create directory where you will keep all the files.
mkdir ~/my-linux-distro/
cd ~/my-linux-distro/
Kernel
I'm using the latest revision. It's a feat of it's own that connects old and new technologies togheter. At the moment it is Kernel 5.13.0-rc2. 
Get the sources:
git clone --depth=1 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
cd linux
Now that you have them in /linux/ directory lets configure and build our custom kernel. First create tiniest configuration:
make ARCH=x86 tinyconfig
Now you need to add additonal config settings on top of it:
make ARCH=x86 menuconfig 
From menus choose those options:
Processor type and features > Processor family > 486
Device Drivers > Character devices > Enable TTY
General Setup > Configure standard kernel features (expert users) > Enable support for printk
General Setup > Initial RAM filesystem and RAM disk (initramfs/initrd)
Executable file formats > Kernel support for ELF binaries
Executable file formats > Kernel support for scripts starting with #!
Exit configuration (yes, save settings to .config). Now it's time for compiling!
make ARCH=x86 bzImage
This will take a while depending on the speed of your CPU. In the end the kernel will be created in arch/x86/boot/bzImage. Move it to our main directory.
mv arch/x86/boot/bzImage ../
Tools
Without tools kernel will just boot and you will not be able to do anything. One of the most popular lightweight tools are BusyBox. Those replaces (bigger) GNU tools with just enough functionality for embedded needs.
Check the latest version at https://busybox.net/downloads/. At the moment it is 1.33.1. Download this file, extract it and change directory:
wget https://busybox.net/downloads/busybox-1.33.1.tar.bz2
tar xjvf busybox-1.19.3.tar.bz2
cd busybox-1.33.1/
As with kernel you need to create starting configuration:
make allnoconfig
Now the fun part. You need to choose what tools you want. Each menu entry will show how much more KB will be taken if you choose it. So choose it wisely :)
make menuconfig
I chosed those:
Settings > Build static binary (no shared libs)
Coreutils > cat, du, echo, ls, sleep, uname (change Operating system name to anything you want)
Console Utilities > clear
Editors > vi
Init Utilities > poweroff, reboot, init, Support reading an inittab file
Linux System Utilities > mount, umount
Miscellaneous Utilities > less
Shells > ash
Now exit with save config. Compile time.
make
make install
This will create a filesystem with all the files at _install. Move it to our main directory. I like to rename it also.
mv _install ../filesystem
Filesystem
You got kernel and basic tools but the system still needs some additional directory structure.
cd ../filesystem
mkdir -pv {dev,proc,etc/init.d,sys,tmp}
sudo mknod dev/console c 5 1
sudo mknod dev/null c 1 3
Now create few configuration files. First one is a welcome message that will be shown after booting:
cat >> welcome << EOF
Some welcome text…
EOF
Inittab file that handles starting, exiting and restarting:
cat >> etc/inittab << EOF
::sysinit:/etc/init.d/rc
::askfirst:­/bin/sh
::restart:/sbin/init
::ctrlaltdel:/sbin/reboot
::shutdown:/bin/umount ­-a -­r
EOF
And the actual init script:
cat >> etc/init.d/rc << EOF
#!/bin/shmount -t proc none /proc
mount -t sysfs none /sys
clear
cat welcome
/bin/sh
EOF
Make init executable and owner of all files to root:
chmod +x etc/init.d/rc
sudo chown -R root:root .
Lastly compress this directory into one file:
find . | cpio -H newc -o | gzip -9 > ../rootfs.cpio.gz
You can test if everything goes as planned by runing QEMU from the base directory:
qemu-system-i386 -kernel bzImage -initrd rootfs.cpio.gz
Next step is to put this on a floppy!
Boot Image
Create this grub file that will point to your newly created kernel and filesystem:
cat >> syslinux.cfg << EOF
DEFAULT linux
LABEL linux 
  SAY [ BOOTING FLOPPINUX VERSION 0.1.0 ] 
  KERNEL bzImage 
  APPEND initrd=rootfs.cpio.gz
EOF
Create empty floppy image:
dd if=/dev/zero of=floppinux.img bs=1k count=1440
mkdosfs floppinux.img
syslinux --install floppinux.img
Mount it and copy syslinux, kernel and filesystem onto it:
sudo mount -o loop floppinux.img /mnt
sudo cp bzImage /mnt
sudo cp rootfs.cpio.gz /mnt
sudo cp syslinux.cfg /mnt
sudo umount /mnt
Done!
You have your own distribution image floppinux.img ready to burn onto a floppy and boot on real hardware!
If you don't have a floppy you can just test it in the QEMU like a normal person:
qemu-system-i386 -fda floppinux.img
Summary
Full size: 1440KiB / 1.44MiB
Kernel size: 632KiB
Tools: 552KiB
Free space left (du -h): 272KiB
Adding Embedded Application
Now as we have our embedded distribution let's make some use of it. It boots very fast (after floppy loads) and can easily run any compiled application. But I want to have some fun with scripts. So I will put .sh scripts instead of compiled software. The process then is the same.
Update files in the /filesystem/ directory
compress rootfs file
mount distro image
replace rootfs file
umonut image
(optionaly) burn new iso to the floppy
boot to a new system with your updated software
You will also want to change the etc/init.d/rc script and change /bin/sh to a script/binary file path.
But for time of debugging it's better to run the app by hand. I depend on scripts so having Vi editor is very handy for testing fixes live.
Resources
https://www.insentricity.com/a.cl/283
https://backreference.org/2010/07/04/modifying-initrdinitramfs-files/
https://www.centennialsoftwaresolutions.com/post/build-the-linux-kernel-and-busybox-and-run-them-on-qemu
http://blog.nasirabed.com/2012/01/minimal-linux-busybox.html
https://bootlin.com/doc/legacy/elfs/embedded_lfs.pdf
 
OEBPS/toc.xhtml
		Section 1

		Goals for the project

		Let's Build FLOPPINUX Distribution

		Summary





OEBPS/images/image0001.img


