
Floppinux - An Embedded

�Linux on a Single �Floppy

MANUAL FOR VERSION 0.1.0

 _____ _ _

 | ___| | ___ _ __ _ __ (_)_ __ _ ___ __

 | |_ | |/ _ \| '_ \| '_ \| | '_ \| | | \ \/ /

 | _| | | (_) | |_) | |_) | | | | | |_| |> <

 |_| |_|___/| .__/| .__/|_|_| |_|__,_/_/_\

 |_| |_|

By Krzysztof Krystian Jankowski for the community

Goals for the project

The obvious most important goal is to fit everything

(OS+software) on one floppy or 1440KiB

Latest Linux kernel

Tools reduced to those needed to support my embedded

application

Documentation with easy and understandable steps to

reproduce the build

As always free and open source

Additional future upgrades:

Ability to mount another floppy to save files

Nano text editor (or anything similar)

Let's Build FLOPPINUX Distribution

Working Directory

Create directory where you will keep all the files.

mkdir ~/my-linux-distro/

cd ~/my-linux-distro/

Kernel

I'm using the latest revision. It's a feat of it's own that

connects old and new technologies togheter. At the moment

it is Kernel 5.13.0-rc2.

Get the sources:

git clone --depth=1

https://git.kernel.org/pub/scm/linux/kernel/git/stable/

linux.git

cd linux

Now that you have them in /linux/ directory lets configure

and build our custom kernel. First create tiniest

configuration:

make ARCH=x86 tinyconfig

Now you need to add additonal config settings on top of it:

make ARCH=x86 menuconfig

From menus choose those options:

Processor type and features > Processor family > 486

Device Drivers > Character devices > Enable TTY

General Setup > Configure standard kernel features (expert

users) > Enable support for printk

General Setup > Initial RAM filesystem and RAM disk

(initramfs/initrd)

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Executable file formats > Kernel support for ELF

binaries

Executable file formats > Kernel support for scripts

starting with #!

Exit configuration (yes, save settings to .config). Now it's

time for compiling!

make ARCH=x86 bzImage

This will take a while depending on the speed of your CPU.

In the end the kernel will be created in

arch/x86/boot/bzImage. Move it to our main directory.

mv arch/x86/boot/bzImage ../

Tools

Without tools kernel will just boot and you will not be able to

do anything. One of the most popular lightweight tools are

BusyBox. Those replaces (bigger) GNU tools with just

enough functionality for embedded needs.

Check the latest version at https://busybox.net/downloads/.

At the moment it is 1.33.1. Download this file, extract it and

change directory:

wget https://busybox.net/downloads/busybox-

1.33.1.tar.bz2

tar xjvf busybox-1.19.3.tar.bz2

cd busybox-1.33.1/

As with kernel you need to create starting configuration:

make allnoconfig

Now the fun part. You need to choose what tools you want.

Each menu entry will show how much more KB will be taken

if you choose it. So choose it wisely :)

make menuconfig

https://busybox.net/downloads/
https://busybox.net/downloads/busybox-1.33.1.tar.bz2

I chosed those:

Settings > Build static binary (no shared libs)

Coreutils > cat, du, echo, ls, sleep, uname (change

Operating system name to anything you want)

Console Utilities > clear

Editors > vi

Init Utilities > poweroff, reboot, init, Support reading

an inittab file

Linux System Utilities > mount, umount

Miscellaneous Utilities > less

Shells > ash

Now exit with save config. Compile time.

make

make install

This will create a filesystem with all the files at _install. Move

it to our main directory. I like to rename it also.

mv _install ../filesystem

Filesystem

You got kernel and basic tools but the system still needs

some additional directory structure.

cd ../filesystem

mkdir -pv {dev,proc,etc/init.d,sys,tmp}

sudo mknod dev/console c 5 1

sudo mknod dev/null c 1 3

Now create few configuration files. First one is a welcome

message that will be shown after booting:

cat >> welcome << EOF

Some welcome text…

EOF

Inittab file that handles starting, exiting and restarting:

cat >> etc/inittab << EOF

::sysinit:/etc/init.d/rc

::askfirst: /bin/sh

::restart:/sbin/init

::ctrlaltdel:/sbin/reboot

::shutdown:/bin/umount -a - r

EOF

And the actual init script:

cat >> etc/init.d/rc << EOF

#!/bin/shmount -t proc none /proc

mount -t sysfs none /sys

clear

cat welcome

/bin/sh

EOF

Make init executable and owner of all files to root:

chmod +x etc/init.d/rc

sudo chown -R root:root .

Lastly compress this directory into one file:

find . | cpio -H newc -o | gzip -9 > ../rootfs.cpio.gz

You can test if everything goes as planned by runing QEMU

from the base directory:

qemu-system-i386 -kernel bzImage -initrd

rootfs.cpio.gz

Next step is to put this on a floppy!

Boot Image

Create this grub file that will point to your newly created

kernel and filesystem:

cat >> syslinux.cfg << EOF

DEFAULT linux

LABEL linux

 SAY [BOOTING FLOPPINUX VERSION 0.1.0]

 KERNEL bzImage

 APPEND initrd=rootfs.cpio.gz

EOF

Create empty floppy image:

dd if=/dev/zero of=floppinux.img bs=1k

count=1440

mkdosfs floppinux.img

syslinux --install floppinux.img

Mount it and copy syslinux, kernel and filesystem onto it:

sudo mount -o loop floppinux.img /mnt

sudo cp bzImage /mnt

sudo cp rootfs.cpio.gz /mnt

sudo cp syslinux.cfg /mnt

sudo umount /mnt

Done!

You have your own distribution image floppinux.img ready

to burn onto a floppy and boot on real hardware!

If you don't have a floppy you can just test it in the QEMU

like a normal person:

qemu-system-i386 -fda floppinux.img

Summary

Full size: 1440KiB / 1.44MiB

Kernel size: 632KiB

Tools: 552KiB

Free space left (du -h): 272KiB

Adding Embedded Application

Now as we have our embedded distribution let's make some

use of it. It boots very fast (after floppy loads) and can easily

run any compiled application. But I want to have some fun

with scripts. So I will put .sh scripts instead of compiled

software. The process then is the same.

Update files in the /filesystem/ directory

compress rootfs file

mount distro image

replace rootfs file

umonut image

(optionaly) burn new iso to the floppy

boot to a new system with your updated software

You will also want to change the etc/init.d/rc script and

change /bin/sh to a script/binary file path.

But for time of debugging it's better to run the app by hand.

I depend on scripts so having Vi editor is very handy for

testing fixes live.

Resources

https://www.insentricity.com/a.cl/283

https://backreference.org/2010/07/04/modifying-

initrdinitramfs-files/

https://www.centennialsoftwaresolutions.com/post/build-the-

linux-kernel-and-busybox-and-run-them-on-qemu

https://www.insentricity.com/a.cl/283
https://backreference.org/2010/07/04/modifying-initrdinitramfs-files/
https://www.centennialsoftwaresolutions.com/post/build-the-linux-kernel-and-busybox-and-run-them-on-qemu

http://blog.nasirabed.com/2012/01/minimal-linux-

busybox.html

https://bootlin.com/doc/legacy/elfs/embedded_lfs.pdf

http://web.archive.org/web/20120531230823/http://blog.nasirabed.com/2012/01/minimal-linux-busybox.html
https://bootlin.com/doc/legacy/elfs/embedded_lfs.pdf

	Section 1
	Goals for the project
	Let's Build FLOPPINUX Distribution
	Summary

